مقایسه مدلهای شبکه عصبی مصنوعی دینامیک و همبستگی خطی چند متغیره در پیش بینی آبدهی به کمک داده های سنجش از دور

Authors

  • فریماه سادات جمالی دانشگاه تهران
  • محمدابراهیم بنی حبیب پردیس ابوریحان دانشگاه تهران
Abstract:

هدف تحقیق حاضر، مقایسه توانایی مدل شبکه عصبی مصنوعی و مدل همبستگی خطی چند متغیره در پیشبینی ششماه آیندة جریان ورودی به مخزن سد شاهچراغی در استان سمنان، بر اساس دادههای ماهانه آبدهی، دمای متوسط،ماهواره AVHRR بارش و سطح پوششبرف چند ماه قبل میباشد. برای تعیین سطح پوششبرف، از تصاویر سنجندهاستفاده گردیده و جداسازی سطح برف با استفاده از روش جداسازی پدیدهها بر اساس حد آستانه هیستوگرام NOAAآنها در باندهای مرئی و حرارتی انجام شده است. یک لایه مخفی و تابع انتقال سیگموئید و تابع آموزش لونبرگ-مارکوارت در ساختار مدلهای شبکه عصبی مصنوعی استفاده گردیده است. پنج مدل شبکه عصبی مصنوعی دینامیک وپنج مدل همبستگی خطی چند متغیره با دادههای ورودی متفاوت ساخته شده و نتایج آنها مقایسه شد. معیارهای انتخابمیانگین قدرمطلق خطای نسبی ،(MBE) انحراف خطای میانگین ،(RMSE) بهترین مدل، شامل جذر متوسط خطابوده و بهترین نتیجه با مدلی حاصل گردید که ( R و ضریب همبستگی ( 2 (REmax) حداکثر خطای نسبی ،(MARE)دادههای بارش، آبدهی و سطح پوشش برف را به عنوان ورودی مدل استفاده کرده است. همچنین بهبود نتایج مدلمنتخب نسبت به مدل همبستگی خطی چند متغیره که در تحقیقات قبلی برای پیشبینی جریان به کار رفته است، بررسیشده است. نتایج نشان میدهد شاخصخطای نسبی حداکثر در مدل شبکه عصبی ۸۰ % کمتر از مدل رگرسیون خطی چندمتغیره است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه مدلهای خودهمبسته شبکه عصبی مصنوعی دینامیک و استاتیک در پیش بینی جریان ماهانه ورودی به مخزن سد دز

در مقاله حاضر قابلیت مدل خود همبسته شبکه عصبی مصنوعی دینامیک برای پیش­بینی جریان ماهانه ورودی مخزن سد دز ارزیابی شده و نتایج  به دست آمده با مدل خودهمبسته شبکه عصبی مصنوعی استاتیک مقایسه شده است. در تحقیقات قبل مقایسه مدل‌های استاتیک و دینامیک در شبکه‌های عصبی مصنوعی صورت نگرفته است. ضمناً تحقیق حاضر از حیث خودهمبستگی مدل شبکه عصبی مصنوعی، دارای نوآوری می‌باشد. در این تحقیق آبدهی های ماهانه بین ...

full text

پیش بینی دمای کمینه ایستگاه کرج با استفاده از داده های شاخص های پیوند از دور و شبکه عصبی مصنوعی

توجه علمی به مخاطرات محیطی که آسیب پذیری بسیاری از کشورهای دنیا را به دنبال دارد، آغازی نسبتاً تازه دارد. یکی از این خطرها یخبندانها می باشند که سبب زیانهای عظیمی در زمینه های کشاورزی، حمل و نقل، انرژی ، زیست محیطی و غیره شده است. جهت جلوگیری از خطرات ناشی از آنها استفاده از روشهای پیش بینی امکان پیش آگاهی از حداقل دما و رخداد پدیده یخبندان را فراهم ساخته  تا مسئولان در جهت جلوگیری از آن...

full text

مقایسه عملکرد مدلهای شبکه عصبی مصنوعی واتورگرسیون برداری در پیش بینی شاخص قیمت و بازده نقدی

هدف این مقاله تجزیه و تحلیل های اقتصادی، پیش بینی صحیح و دقیق متغیرهای اقتصادی است. در این زمینه، روشهای مختلفی برای پیش بینی در اقتصاد وجود دارد، که از جمله آنها میتوان به مدلهای رگرسیون ، معادلات همزمان و... اشاره کرد. مدلهای سری زمانی نیز از جمله مدلهای اقتصادی می باشند که در آن پیش بینی مقادیر سری، بیش از هر چیز به عهده خودشان گذاشته می شود اما استفاده از روش های غیر کلاسیک در شناسایی مدل و...

full text

ارزیابی عملکرد مدل های شبکه عصبی مصنوعی، نروفازی و رگرسیون چند متغیره در پیش بینی مقاومت فشاری بتن به کمک روش بارنقطه ای

امروزه تعیین مقاومت بتن درجا مورد توجه می‌باشد. ضرورت انجام آزمایشات درجا را می‌توان در عامل‌های مختلفی چون تغییر یا توسعه سازه، بررسی کیفیت، ارزیابی مقاومت و عملکرد بتن جستجو نمود. در این پژوهش عملکرد مدل‌های شبکه عصبی مصنوعی، نروفازی تطبیقی و رگرسیون چندمتغیره با هدف سنجش مقاومت فشاری بتن با روش بارنقطه‌ای مورد مطالعه قرار می‌گیرد. همچنین رابطه‌ای محاسباتی بر اساس روش رگرسیون چند‌متغیره برای ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 20  issue 2

pages  173- 185

publication date 2014-05-07

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023